Robot assemblers build structures out of identical modular pieces

Pushing forward on the vision of “programmable matter,” MIT researchers demonstrated a new kind of assembly system based on robots that can collaboratively build complicated structures from small identical pieces. Professor Neil Gershenfeld, graduate student Benjamin Jenett, and their colleagues present their research in a scientific paper titled “Material–Robot System for Assembly of Discrete Cellular Structures.” From MIT News:

“What’s at the heart of this is a new kind of robotics, that we call relative robots,” Gershenfeld says. Historically, he explains, there have been two broad categories of robotics — ones made out of expensive custom components that are carefully optimized for particular applications such as factory assembly, and ones made from inexpensive mass-produced modules with much lower performance. The new robots, however, are an alternative to both. They’re much simpler than the former, while much more capable than the latter, and they have the potential to revolutionize the production of large-scale systems, from airplanes to bridges to entire buildings.

According to Gershenfeld, the key difference lies in the relationship between the robotic device and the materials that it is handling and manipulating. With these new kinds of robots, “you can’t separate the robot from the structure — they work together as a system,” he says. For example, while most mobile robots require highly precise navigation systems to keep track of their position, the new assembler robots only need to keep track of where they are in relation to the small subunits, called voxels, that they are currently working on. Every time the robot takes a step onto the next voxel, it readjusts its sense of position, always in relation to the specific components that it is standing on at the moment….

Ultimately, such systems could be used to construct entire buildings, especially in difficult environments such as in space, or on the moon or Mars, Gershenfeld says. This could eliminate the need to ship large preassembled structures all the way from Earth. Instead it could be possible to send large batches of the tiny subunits — or form them from local materials using systems that could crank out these subunits at their final destination point. “If you can make a jumbo jet, you can make a building,” Gershenfeld says.

Read More

Robot assemblers build structures out of identical modular pieces

Pushing forward on the vision of “programmable matter,” MIT researchers demonstrated a new kind of assembly system based on robots that can collaboratively build complicated structures from small identical pieces. Professor Neil Gershenfeld, graduate student Benjamin Jenett, and their colleagues present their research in a scientific paper titled “Material–Robot System for Assembly of Discrete Cellular Structures.” From MIT News:

“What’s at the heart of this is a new kind of robotics, that we call relative robots,” Gershenfeld says. Historically, he explains, there have been two broad categories of robotics — ones made out of expensive custom components that are carefully optimized for particular applications such as factory assembly, and ones made from inexpensive mass-produced modules with much lower performance. The new robots, however, are an alternative to both. They’re much simpler than the former, while much more capable than the latter, and they have the potential to revolutionize the production of large-scale systems, from airplanes to bridges to entire buildings.

According to Gershenfeld, the key difference lies in the relationship between the robotic device and the materials that it is handling and manipulating. With these new kinds of robots, “you can’t separate the robot from the structure — they work together as a system,” he says. For example, while most mobile robots require highly precise navigation systems to keep track of their position, the new assembler robots only need to keep track of where they are in relation to the small subunits, called voxels, that they are currently working on. Every time the robot takes a step onto the next voxel, it readjusts its sense of position, always in relation to the specific components that it is standing on at the moment….

Ultimately, such systems could be used to construct entire buildings, especially in difficult environments such as in space, or on the moon or Mars, Gershenfeld says. This could eliminate the need to ship large preassembled structures all the way from Earth. Instead it could be possible to send large batches of the tiny subunits — or form them from local materials using systems that could crank out these subunits at their final destination point. “If you can make a jumbo jet, you can make a building,” Gershenfeld says.

Read More

Robot assemblers build structures out of identical modular pieces

Pushing forward on the vision of “programmable matter,” MIT researchers demonstrated a new kind of assembly system based on robots that can collaboratively build complicated structures from small identical pieces. Professor Neil Gershenfeld, graduate student Benjamin Jenett, and their colleagues present their research in a scientific paper titled “Material–Robot System for Assembly of Discrete Cellular Structures.” From MIT News:

“What’s at the heart of this is a new kind of robotics, that we call relative robots,” Gershenfeld says. Historically, he explains, there have been two broad categories of robotics — ones made out of expensive custom components that are carefully optimized for particular applications such as factory assembly, and ones made from inexpensive mass-produced modules with much lower performance. The new robots, however, are an alternative to both. They’re much simpler than the former, while much more capable than the latter, and they have the potential to revolutionize the production of large-scale systems, from airplanes to bridges to entire buildings.

According to Gershenfeld, the key difference lies in the relationship between the robotic device and the materials that it is handling and manipulating. With these new kinds of robots, “you can’t separate the robot from the structure — they work together as a system,” he says. For example, while most mobile robots require highly precise navigation systems to keep track of their position, the new assembler robots only need to keep track of where they are in relation to the small subunits, called voxels, that they are currently working on. Every time the robot takes a step onto the next voxel, it readjusts its sense of position, always in relation to the specific components that it is standing on at the moment….

Ultimately, such systems could be used to construct entire buildings, especially in difficult environments such as in space, or on the moon or Mars, Gershenfeld says. This could eliminate the need to ship large preassembled structures all the way from Earth. Instead it could be possible to send large batches of the tiny subunits — or form them from local materials using systems that could crank out these subunits at their final destination point. “If you can make a jumbo jet, you can make a building,” Gershenfeld says.

Read More

Sens Paraguay Building / ATV Arquitectos

Sens Paraguay Building / ATV Arquitectos








Sens Paraguay Building / ATV Arquitectos, © Albano García

© Albano García


© Albano García


© Albano García


© Albano García


© Albano García






+ 14




  • Architects
    Authors of this architecture project









    ATV Arquitectos


  • Area
    Area of this architecture project









    2900.0 m2


  • Project Year
    Brands with products used in this architecture project


















    2017

  • Lead Architects

    Federico Azubel, Ignacio Trabucchi, Walter Viggiano

  • Photographs



More Specs


Less Specs


© Albano García

© Albano García

Text description provided by the architects. The project is placed in a quiet street of low traffic, in the middle of Palermo Hollywood, a trendy neighborhood in the city of Buenos Aires. This architectural work puts once again in practice an experimental way of thinking spaces developed by ATV Arquitectos, where the concrete structure is the main issue of the project. This piece not only defines the different spaces but also the relationships among them, and also works on the limit between interior and exterior.


© Albano García

© Albano García





© Albano García

© Albano García

Each item being part of this structure takes an expressive role in the project, showing their true characteristics, qualifying the contacts among pieces, making them unique. Being concrete the chosen material, the dimensions of the expansions are beyond the usual ones.


© Albano García

© Albano García


© Albano García

© Albano García

These spaces, and the way they are located resulting in a varying facade, which alternates expansions, empty spaces, and double heights; in the pursue of bringing the spirit of country houses and the relationships they present with the exterior space to the urban areas. Another important subject that the project pays attention to is the study of the different ways of living. The building presents two and three rooms units in the first six floors, with their own expansions and terraces, working on the relationships previously mentioned. The structural elements are clearly differenced from the ones of the enclosure. The spaces can be opened or closed depending on the user and its personal desires since sliding wood panels were used to divide the bedroom from the living room. The last floors of the building conform the ending of this and present two four-room units, both with their own pools, and terraces in different levels, taking to the máximum the subjects explored in the whole project.


© Albano García

© Albano García

Project gallery



See all


Show less

Project location

Address:

Palermo Hollywood, Buenos Aires, Argentina

Location to be used only as a reference. It could indicate city/country but not exact address.

Cite: “Sens Paraguay Building / ATV Arquitectos” [Edificio sens Paraguay / ATV Arquitectos] 01 Oct 2019. ArchDaily. Accessed .

世界上最受欢迎的建筑网站现已推出你的母语版本!

想浏览ArchDaily中国吗?


Did you know?

You’ll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.

Read More

Return to the Moon? 3D Printing with Moondust Could Be the Key to Future Lunar Living

An artist's illustration of astronaut pioneers on Mars. Building a self-sustaining settlement on the Red Planet will require taking advantage of native Martian resources, exploration advocates stress.

(Image: © Pat Rawlings/NASA)

This article was originally published at The Conversation. The publication contributed the article to Space.com’s Expert Voices: Op-Ed & Insights.

The entire Apollo 11 mission to the moon took just eight days. If we ever want to build permanent bases on the moon, or perhaps even Mars or beyond, then future astronauts will have to spend many more days, months and maybe even years in space without a constant lifeline to Earth. The question is how would they get hold of everything they needed. Using rockets to send all the equipment and supplies for building and maintaining long-term settlements on the moon would be hugely expensive.

This is where 3D printing could come in, allowing astronauts to construct whatever their lunar colony needed from raw materials. Much of the excitement around 3D printing in space has focused on using it to construct buildings from lunar rock. But my research suggests it may actually be more practical to use this moondust to supply lunar manufacturing labs turning out replacement components for all sorts of equipment.

Technically known as additive manufacturing, 3D printing comprises a sophisticated group of technologies that can produce physical products of almost any shape or geometrical complexity from digital designs. The technology can already make things from a huge palette of materials including metals, ceramics and plastics, some of which can be used to make space-grade equipment.

3d printing supporting colonizing the moon and mars

3D priting with moondust.

(Image credit: Thanos Goulas)

3D printing also has the added benefit of working with minimal human involvement. You can just set it to print and wait for the finished product. This means it can even be operated remotely. In theory, you could send a 3D printer to the moon (or any other space destination) ahead of a human crew and it could start manufacturing structures before the astronauts even arrived.

There are, of course, significant challenges. 3D printing has primarily been developed for use on Earth, relying on certain consistent levels of gravity and temperature to operate as designed. So far it uses materials significantly less complex than those found on the surface of the moon or Mars.

Printing with moondust

The moon is covered in regolith, a loose, powdery material formed from millions of years of meteors bombarding the moon’s surface. This has slowly transformed the top layers of bedrock into a soil-like material made from grains less than a few millimetres across. While you could in theory use regolith for additive manufacturin, for 3D-printed houses or even more basic components such as bricks and cement you would need additional materials from Earth to mix with the regolith such as liquid binders.

My colleagues and I have been looking into ways you could 3D print a range of engineering components using only regolith. Our technique involves using a laser to turn a very small amount of energy into heat that can melt and fuse together grains of regolith to form a thin but solid slice of the material. By repeating this process multiple times and adding more layers in sequence, we can eventually build a three-dimensional object.

3d printing supporting colonizing the moon and mars

Small components could be made quickly and without other materials.

(Image credit: Thanos Goulas)

Each layer is than 1mm in thickness and so building large structures such as walls or complete shelters would take an impractical amount of time. Instead, it’s much better for producing smaller, precisely designed highly detailed objects such as dust or water filters, which typically need holes of less than a micron (0.001 mm). 3D printing would be particularly useful for replicating vital components if they were to become damaged or worn, and needed replacing faster than it would take a supply ship to bring a new one from Earth.

To figure out how to get this 3D printing to work in space, we’ve carried out in-depth investigations into both the material and the processes, and tried to understand how the conditions on the moon would likely impact them. Without a ready supply of real regolith, we used a material that imitates its bulk chemical and mineral composition. This was formed under very different conditions to a meteor bombardment, but it’s complex enough for us to study its interaction with the laser and use that knowledge to estimate how real regolith would react.

Thanos Goulas, Post-Doctoral Research Associate, Additive Manufacturing Research Group, Loughborough University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Follow all of the Expert Voices issues and debates — and become part of the discussion — on Facebook and Twitter. The views expressed are those of the author and do not necessarily reflect the views of the publisher.  

Have a news tip, correction or comment? Let us know at [email protected]

Read More

Return to the Moon? 3D Printing with Moondust Could Be the Key to Future Lunar Living

An artist's illustration of astronaut pioneers on Mars. Building a self-sustaining settlement on the Red Planet will require taking advantage of native Martian resources, exploration advocates stress.

(Image: © Pat Rawlings/NASA)

This article was originally published at The Conversation. The publication contributed the article to Space.com’s Expert Voices: Op-Ed & Insights.

The entire Apollo 11 mission to the moon took just eight days. If we ever want to build permanent bases on the moon, or perhaps even Mars or beyond, then future astronauts will have to spend many more days, months and maybe even years in space without a constant lifeline to Earth. The question is how would they get hold of everything they needed. Using rockets to send all the equipment and supplies for building and maintaining long-term settlements on the moon would be hugely expensive.

This is where 3D printing could come in, allowing astronauts to construct whatever their lunar colony needed from raw materials. Much of the excitement around 3D printing in space has focused on using it to construct buildings from lunar rock. But my research suggests it may actually be more practical to use this moondust to supply lunar manufacturing labs turning out replacement components for all sorts of equipment.

Technically known as additive manufacturing, 3D printing comprises a sophisticated group of technologies that can produce physical products of almost any shape or geometrical complexity from digital designs. The technology can already make things from a huge palette of materials including metals, ceramics and plastics, some of which can be used to make space-grade equipment.

3d printing supporting colonizing the moon and mars

3D priting with moondust.

(Image credit: Thanos Goulas)

3D printing also has the added benefit of working with minimal human involvement. You can just set it to print and wait for the finished product. This means it can even be operated remotely. In theory, you could send a 3D printer to the moon (or any other space destination) ahead of a human crew and it could start manufacturing structures before the astronauts even arrived.

There are, of course, significant challenges. 3D printing has primarily been developed for use on Earth, relying on certain consistent levels of gravity and temperature to operate as designed. So far it uses materials significantly less complex than those found on the surface of the moon or Mars.

Printing with moondust

The moon is covered in regolith, a loose, powdery material formed from millions of years of meteors bombarding the moon’s surface. This has slowly transformed the top layers of bedrock into a soil-like material made from grains less than a few millimetres across. While you could in theory use regolith for additive manufacturin, for 3D-printed houses or even more basic components such as bricks and cement you would need additional materials from Earth to mix with the regolith such as liquid binders.

My colleagues and I have been looking into ways you could 3D print a range of engineering components using only regolith. Our technique involves using a laser to turn a very small amount of energy into heat that can melt and fuse together grains of regolith to form a thin but solid slice of the material. By repeating this process multiple times and adding more layers in sequence, we can eventually build a three-dimensional object.

3d printing supporting colonizing the moon and mars

Small components could be made quickly and without other materials.

(Image credit: Thanos Goulas)

Each layer is than 1mm in thickness and so building large structures such as walls or complete shelters would take an impractical amount of time. Instead, it’s much better for producing smaller, precisely designed highly detailed objects such as dust or water filters, which typically need holes of less than a micron (0.001 mm). 3D printing would be particularly useful for replicating vital components if they were to become damaged or worn, and needed replacing faster than it would take a supply ship to bring a new one from Earth.

To figure out how to get this 3D printing to work in space, we’ve carried out in-depth investigations into both the material and the processes, and tried to understand how the conditions on the moon would likely impact them. Without a ready supply of real regolith, we used a material that imitates its bulk chemical and mineral composition. This was formed under very different conditions to a meteor bombardment, but it’s complex enough for us to study its interaction with the laser and use that knowledge to estimate how real regolith would react.

Thanos Goulas, Post-Doctoral Research Associate, Additive Manufacturing Research Group, Loughborough University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Follow all of the Expert Voices issues and debates — and become part of the discussion — on Facebook and Twitter. The views expressed are those of the author and do not necessarily reflect the views of the publisher.  

Have a news tip, correction or comment? Let us know at [email protected]

Read More

Turning Old Toggle Switches Into Retro-Tech Showpieces

While those of us in the hacking community usually focus on making new things, there’s plenty to be said for restoring old stuff. Finding a piece of hardware and making it look and work like new can be immensely satisfying, and dozens of YouTube channels and blogs exist merely to feed the need for more restoration content.

The aptly named [Switch and Lever] has been riding the retro wave for a while, and his video on restoring and repairing vintage toggle switches shows that he has picked up a trick or two worth sharing. The switches are all flea market finds, chunky beasts that have all seen better days. But old parts were built to last, and they proved sturdy enough to withstand the first step in any restoration: disassembly. Most of the switches were easily pried open, but a couple needed rivets drilled out first. The ensuing cleaning and polishing steps were pretty basic, although we liked the tips about the micromesh abrasives and the polishing compound. Another great tip was using phenolic resin PCBs as repair material for broken Bakelite bodies; they’re chemically similar, and while they may not match the original exactly, they make for a great repair when teamed up with CA glue and baking soda as a filler.

3D-printed repairs would work too, but there’s something satisfying about keeping things historically consistent. Celebrating engineering history is really what restorations like these are all about, after all. And even if you’re building something new, you can make it look retro cool with these acid-etched brass plaques that [Switch and Lever] also makes.

Read More

Turning Old Toggle Switches Into Retro-Tech Showpieces

While those of us in the hacking community usually focus on making new things, there’s plenty to be said for restoring old stuff. Finding a piece of hardware and making it look and work like new can be immensely satisfying, and dozens of YouTube channels and blogs exist merely to feed the need for more restoration content.

The aptly named [Switch and Lever] has been riding the retro wave for a while, and his video on restoring and repairing vintage toggle switches shows that he has picked up a trick or two worth sharing. The switches are all flea market finds, chunky beasts that have all seen better days. But old parts were built to last, and they proved sturdy enough to withstand the first step in any restoration: disassembly. Most of the switches were easily pried open, but a couple needed rivets drilled out first. The ensuing cleaning and polishing steps were pretty basic, although we liked the tips about the micromesh abrasives and the polishing compound. Another great tip was using phenolic resin PCBs as repair material for broken Bakelite bodies; they’re chemically similar, and while they may not match the original exactly, they make for a great repair when teamed up with CA glue and baking soda as a filler.

3D-printed repairs would work too, but there’s something satisfying about keeping things historically consistent. Celebrating engineering history is really what restorations like these are all about, after all. And even if you’re building something new, you can make it look retro cool with these acid-etched brass plaques that [Switch and Lever] also makes.

Read More

Turning Old Toggle Switches Into Retro-Tech Showpieces

While those of us in the hacking community usually focus on making new things, there’s plenty to be said for restoring old stuff. Finding a piece of hardware and making it look and work like new can be immensely satisfying, and dozens of YouTube channels and blogs exist merely to feed the need for more restoration content.

The aptly named [Switch and Lever] has been riding the retro wave for a while, and his video on restoring and repairing vintage toggle switches shows that he has picked up a trick or two worth sharing. The switches are all flea market finds, chunky beasts that have all seen better days. But old parts were built to last, and they proved sturdy enough to withstand the first step in any restoration: disassembly. Most of the switches were easily pried open, but a couple needed rivets drilled out first. The ensuing cleaning and polishing steps were pretty basic, although we liked the tips about the micromesh abrasives and the polishing compound. Another great tip was using phenolic resin PCBs as repair material for broken Bakelite bodies; they’re chemically similar, and while they may not match the original exactly, they make for a great repair when teamed up with CA glue and baking soda as a filler.

3D-printed repairs would work too, but there’s something satisfying about keeping things historically consistent. Celebrating engineering history is really what restorations like these are all about, after all. And even if you’re building something new, you can make it look retro cool with these acid-etched brass plaques that [Switch and Lever] also makes.

Read More

Sens Paraguay Building / ATV Arquitectos

Sens Paraguay Building / ATV Arquitectos








Sens Paraguay Building / ATV Arquitectos, © Albano García

© Albano García


© Albano García


© Albano García


© Albano García


© Albano García






+ 14




  • Architects
    Authors of this architecture project









    ATV Arquitectos


  • Area
    Area of this architecture project









    2900.0 m2


  • Project Year
    Brands with products used in this architecture project


















    2017

  • Lead Architects

    Federico Azubel, Ignacio Trabucchi, Walter Viggiano

  • Photographs



More Specs


Less Specs


© Albano García

© Albano García

Text description provided by the architects. The project is placed in a quiet street of low traffic, in the middle of Palermo Hollywood, a trendy neighborhood in the city of Buenos Aires. This architectural work puts once again in practice an experimental way of thinking spaces developed by ATV Arquitectos, where the concrete structure is the main issue of the project. This piece not only defines the different spaces but also the relationships among them, and also works on the limit between interior and exterior.


© Albano García

© Albano García





© Albano García

© Albano García

Each item being part of this structure takes an expressive role in the project, showing their true characteristics, qualifying the contacts among pieces, making them unique. Being concrete the chosen material, the dimensions of the expansions are beyond the usual ones.


© Albano García

© Albano García


© Albano García

© Albano García

These spaces, and the way they are located resulting in a varying facade, which alternates expansions, empty spaces, and double heights; in the pursue of bringing the spirit of country houses and the relationships they present with the exterior space to the urban areas. Another important subject that the project pays attention to is the study of the different ways of living. The building presents two and three rooms units in the first six floors, with their own expansions and terraces, working on the relationships previously mentioned. The structural elements are clearly differenced from the ones of the enclosure. The spaces can be opened or closed depending on the user and its personal desires since sliding wood panels were used to divide the bedroom from the living room. The last floors of the building conform the ending of this and present two four-room units, both with their own pools, and terraces in different levels, taking to the máximum the subjects explored in the whole project.


© Albano García

© Albano García

Project gallery



See all


Show less

Project location

Address:

Palermo Hollywood, Buenos Aires, Argentina

Location to be used only as a reference. It could indicate city/country but not exact address.

Cite: “Sens Paraguay Building / ATV Arquitectos” [Edificio sens Paraguay / ATV Arquitectos] 01 Oct 2019. ArchDaily. Accessed .

世界上最受欢迎的建筑网站现已推出你的母语版本!

想浏览ArchDaily中国吗?


Did you know?

You’ll now receive updates based on what you follow! Personalize your stream and start following your favorite authors, offices and users.

Read More